中波红外光学系统无热化设计和冷反射抑制

谢洪波, 孟庆斌, 杨磊, 江敏, 方春伦, 任德伦

谢洪波, 孟庆斌, 杨磊, 江敏, 方春伦, 任德伦. 中波红外光学系统无热化设计和冷反射抑制[J]. 应用光学, 2017, 38(3): 352-357. DOI: 10.5768/JAO201738.0301003
引用本文: 谢洪波, 孟庆斌, 杨磊, 江敏, 方春伦, 任德伦. 中波红外光学系统无热化设计和冷反射抑制[J]. 应用光学, 2017, 38(3): 352-357. DOI: 10.5768/JAO201738.0301003
Xie Hongbo, Meng Qingbin, Yang Lei, Jiang Min, Fang Chunlun, Ren Delun. Athermalization and suppression of narcissus for medium-wave infrared optical system[J]. Journal of Applied Optics, 2017, 38(3): 352-357. DOI: 10.5768/JAO201738.0301003
Citation: Xie Hongbo, Meng Qingbin, Yang Lei, Jiang Min, Fang Chunlun, Ren Delun. Athermalization and suppression of narcissus for medium-wave infrared optical system[J]. Journal of Applied Optics, 2017, 38(3): 352-357. DOI: 10.5768/JAO201738.0301003

中波红外光学系统无热化设计和冷反射抑制

基金项目: 国防项目
详细信息
    作者简介:

    谢洪波(1969-),男,湖南常德人,博士,副教授,主要从事光学设计与光显示技术方面的研究。E-mail: hbxie@tju.edu.cn

  • 中图分类号: TN202;TN216

Athermalization and suppression of narcissus for medium-wave infrared optical system

  • 摘要: 为了得到性能好、稳定性高,能够满足民用、军事等领域应用的中波红外成像光学系统,采用光学被动式的无热化技术,在常温下像质良好的初始结构基础上,通过对不同红外材料组合,实现系统的无热化设计。利用等效温差(NITD)计算冷反射贡献量,对冷反射贡献量较大表面的曲率和光焦度进行优化。设计结果表明:在-40℃~60℃温度范围内,光学系统的MTF在30 lp/mm处均大于0.5;离焦量在一倍焦深以内,点列图(RMS)直径小于像元尺寸;冷反射残存量最大的表面NITD值降低40%。应用该方法可以很好地实现红外成像光学系统的无热化设计,对冷反射的抑制效果明显。
    Abstract: Infrared optical system is the core component of infrared imaging devices. Athermalization is widely adopted in mid-infrared optical design in order to improve performance and stability of infrared imaging optical systems, and meet performance requirements of civil and military applications. In this paper, passive athermalization design of a non-thermal mid-infrared imaging optical system is realized through combining different infrared materials. Contribution of narcissus is calculated by NITD method, curvature and optical power of surface with large contribution to narcissus are optimized. Results show that MTF of optical system is greater than 0.5 at 30 lp/mm in temperature range of -40 ℃ ~ 60 ℃, defocus distance is less than depth of light, RMS diameter is less than pixel size. Maximum NITD value of narcissus is reduced by 40%, which is smaller than minimum resolution temperature difference of the system. Application of this method can be very good to achieve athermalization design of infrared imaging optics system, and suppression effect of narcissus is obvious.
  • 图  1   系统初始光学结构图

    Figure  1.   Initial optical structure of system

    图  2   不同温度条件下初始光学结构的点列图

    Figure  2.   Spot diagram of initial optical structure under different temperature conditions

    图  3   无热化后光学系统结构倒置示意图

    Figure  3.   Schematic diagram of inverted optical structure with athermalization

    图  4   无热化后各个表面NITD沿探测器对角线分布图

    Figure  4.   NITD distribution of each surface along detector diagonal after athermalization

    图  5   优化后各个表面NITD沿探测器对角线分布图

    Figure  5.   NITD distribution of each surface along detector diagonal after optimization

    图  6   最终无热化系统的结构图

    Figure  6.   Final optical structure with athermalization

    图  7   最终无热化系统在不同温度下的MTF曲线

    Figure  7.   Final MTF curves of optical system with athermalization under different temperatures

    表  1   光学系统的参数

    Table  1   Parameters of optical system

    参数 数值
    工作波段/μm 3.7 ~4.8
    F/# 2
    焦距/mm 120
    工作温度/℃ -40~60
    视场角 对角线最大视场角3.9°
    红外探测器参数 制冷型,640×512像元,单像元尺寸15 μm×15 μm
    下载: 导出CSV

    表  2   常用红外光学材料的折射率和热特性

    Table  2   Refractive index and thermal characteristics of commonly used infrared optical materials

    材料 折射率(@4 μm) dn/dt/(×10-6) 热膨胀系数/(×10-6/℃)
    Si 3.425 159 4.2
    Ge 4.024 424 6.1
    ZnS 2.252 43 7.0
    ZnSe 2.433 63 7.5
    下载: 导出CSV

    表  3   不同材料组合的光学系统在-40℃和60℃的离焦量

    Table  3   Defocus distance of optical system with different materials combination at -40℃ and 60℃

    材料组合顺序 -40℃时离焦量/μm 60℃时离焦量/μm
    SiGeSiZs -60.24 40.35
    SiGeZsSi -70.47 50.24
    SiZsGeSi -16.35 12.48
    ZsSiGeSi -57.58 45.37
    下载: 导出CSV

    表  4   无热化系统的冷反射分析结果

    Table  4   Narcissus analysis of athermal optical system

    表面序号 YNI I/Ibar
    3 4.113 33 0.795 125
    4 -8.638 61 1.343 549
    5 -8.594 74 1.361 919
    6 -0.463 68 0.607 239
    7 8.732 94 0.808 685
    8 8.059 04 0.799 190
    9 -1.577 25 2.857 521
    10 -5.355 62 1.134 264
    下载: 导出CSV

    表  5   系统不同温度下的光学离焦量

    Table  5   Defocus of optical system under various temperatures

    温度/℃ 离焦量/ μm
    -40 -15.17
    20 0
    60 8.78
    下载: 导出CSV
  • [1] 张良.中波红外变焦距系统的光学设计[J].应用光学, 2006, 27(1):32-33 doi: 10.3969/j.issn.1002-2082.2006.01.011

    Zhang Liang.Optical design for middle infrared zoom system[J]. Journal of Applied Optics, 2006, 27(1):32-33. doi: 10.3969/j.issn.1002-2082.2006.01.011

    [2] 王文生.现代光学系统设计[M].北京:国防工业出版社, 2016.

    Wang Wensheng.Contemporary optical system design[M]. Beijing:National Defense Industry Press, 2016.

    [3] 白瑜, 邢廷文, 林妩媚, 等.中波红外成像无热化光学系统设计[J].应用光学, 2012, 33(1):181-185 http://d.old.wanfangdata.com.cn/Periodical/yygx201201033

    Bai Yu, Xing Tingwen, Lin Wumei, et al.Athermalization of middle infrared optical system[J]. Journal of Applied Optics, 2012, 33(1):181-185. http://d.old.wanfangdata.com.cn/Periodical/yygx201201033

    [4] 李荣刚, 刘琳, 张兴德, 等.中波红外无热化镜头的设计与制造[J].激光与红外, 2010, 40(6):653-655. doi: 10.3969/j.issn.1001-5078.2010.06.019

    Li Ronggang, Liu Lin, Zhang Xingde, et al. Design and fabrication of mid-wave infrared lenses with ahermalization[J]. Laser & Infrared, 2010, 40(6):653-655. doi: 10.3969/j.issn.1001-5078.2010.06.019

    [5] 杨长城, 李升辉.中波红外光学系统无热化设计[J].光学与光电技术, 2006, 4(6):28-31. doi: 10.3969/j.issn.1672-3392.2006.06.009

    Yang Changcheng, Li Shenghui. Athermalization of MWIR optical system[J]. Optics & Optoelectronic Technology, 2006, 4(6):28-31. doi: 10.3969/j.issn.1672-3392.2006.06.009

    [6]

    Lloyd J M. Thermal imaging systems[M]. New York: Plenum Press, 1975.

    [7]

    Arasa J, Pizarro C, Diaz J A.Contribution of ghost and narcissus effects in MTF calculation[J]. SPIE, 1999, 3737:118-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC025702641

    [8] 杨正, 屈恩世, 曹剑中, 等.对凝视红外热成像冷反射现象的研究[J].激光与红外, 2008, 38(1):35-38. doi: 10.3969/j.issn.1001-5078.2008.01.011

    Yang Zheng, Qu Enshi, Cao Jianzhong, et al. The narcissus study in the optical system for the infrared staring arrays[J]. Laser & Infrared, 2008, 38(1):35-38. doi: 10.3969/j.issn.1001-5078.2008.01.011

    [9] 栾亚东.红外扫描成像系统中冷反射的光学抑制[J].红外与激光工程, 2006, 35(增刊2):26-30. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2006z2006

    Luan Yadong.Optical method of restraining narcissus in scanning infrared system[J]. Infrared and Laser Engineering, 2006, 35(z2):26-30. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2006z2006

    [10] 刘洋, 安晓强.制冷型红外焦平面系统冷反射效应的分析与控制[J].光学学报, 2012, 32(2):0222007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201202043

    Liu Yang, An Xiaoqiang. Analysis and control of narcissus effect of cooling IR focal plane system[J]. Acta Optica Sinica, 2012, 32(2):0222007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201202043

    [11] 焦明印.红外扫描成像系统中Narcissus等效温差的修正计算[J].光学学报, 1997(1):126-420. doi: 10.3321/j.issn:0253-2239.1997.01.025

    Jiao Mingyin. Corrected calculation of narcissus induced temperature difference in scanned infrared imaging system[J]. Acta Optica Sinica, 1997(1):126-420. doi: 10.3321/j.issn:0253-2239.1997.01.025

    [12] 胡贵红, 陈钱, 沈晓燕.红外焦平面探测器响应非线性的测定[J].光电子激光, 2003, 14(5):489-492. http://d.old.wanfangdata.com.cn/Periodical/gdzjg200305013

    Hu Guihong, ChenQian, Shen Xiaoyan.Research on the nonlinearity of infrared focal plane arrays[J]. Journal of Optoelectronics.Laser, 2003, 14(5):489-492. http://d.old.wanfangdata.com.cn/Periodical/gdzjg200305013

  • 期刊类型引用(2)

    1. 庞华廷,刘立东,黄莉添. 车载激光雷达下新能源汽车无人驾驶障碍检测. 激光杂志. 2024(06): 114-119 . 百度学术
    2. 李会茹. 基于双目视觉的奖状训练器CJ1飞行操纵数据识别技术研究. 机电技术. 2024(05): 45-49 . 百度学术

    其他类型引用(0)

图(7)  /  表(5)
计量
  • 文章访问数:  1682
  • HTML全文浏览量:  446
  • PDF下载量:  276
  • 被引次数: 2
出版历程
  • 收稿日期:  2016-11-01
  • 修回日期:  2017-02-03
  • 刊出日期:  2017-04-30

目录

    /

    返回文章
    返回