基于菌紫质薄膜的相移器及其应用

Phase shifter based on bacteriorhodopsin film and its application

  • 摘要: 设计了一种基于菌紫质光致各向异性的相移器,并把它用于相移干涉计量。取向随机分布的极性菌紫质分子对线偏振诱导光的选择性吸收导致分子取向分布不均匀,使其呈现宏观的各向异性,这种各向异性与诱导光的偏振特性密切相关,圆偏振光经过各向异性的菌紫质薄膜后,出射光的偏振特性完全由偏振诱导光决定。基于上述原理设计了一种新型的相移器,用琼斯矩阵法推导了基于相移器的相移干涉原理。该相移器在工作过程中不需要移动Mach-Zender干涉仪内部的任何器件,仅需要改变外部控制光路中诱导光的偏振取向就可以控制参考光的相位,有助于提高设备的抗振能力。用最小二乘法对相移干涉结果进行重建,得到了和实际相位一致的结果,验证了相移器的可行性。

     

    Abstract: A phase shifter based on photoinduced anisotropy of bacteriorhodopsin film was designed and applied in phase-shifting interferometry. Photoinduced anisotropy in bacteriorhodopsin film is based on photoanisotropic selective bleaching of bacteriorhodopsin molecules under polarized excitation light. It is modulated by the polarization orientation of the linearly polarized excitation light. While it passes through the anisotropic bacteriorhodopsin film, a circularly polarized light is converted into an elliptical polarized light. The polarization properties of the elliptical polarized light are dependent on the polarization orientation of the linearly polarized excitation light. A phase shifter based on the photoinduced anisotropy of bacteriorhodopsin film was presented theoretically by Jones matrix and experimentally. Phase shift is controlled by the polarization orientation of the external excitation light, thus, it can be controlled without moving parts inside the Mach-Zender interferometer, which contributes to the mechanical stability of the system. Least square method, which bases on four-step phase-shifting interferometry, was applied to the reconstruction of the profile of phase object. The experiments were conducted to verify the feasibility of this phase shifter on the phase-shifting interferometry.

     

/

返回文章
返回