光学显微镜自动聚焦取窗方法研究

彭国晋, 玉振明, 于健海

彭国晋, 玉振明, 于健海. 光学显微镜自动聚焦取窗方法研究[J]. 应用光学, 2015, 36(4): 550-558. DOI: 10.5768/JAO201536.0402003
引用本文: 彭国晋, 玉振明, 于健海. 光学显微镜自动聚焦取窗方法研究[J]. 应用光学, 2015, 36(4): 550-558. DOI: 10.5768/JAO201536.0402003
Peng Guo-jin, Yu Zhen-ming, Yu Jian-hai. Auto-focus windows selection algorithm for optical microscope[J]. Journal of Applied Optics, 2015, 36(4): 550-558. DOI: 10.5768/JAO201536.0402003
Citation: Peng Guo-jin, Yu Zhen-ming, Yu Jian-hai. Auto-focus windows selection algorithm for optical microscope[J]. Journal of Applied Optics, 2015, 36(4): 550-558. DOI: 10.5768/JAO201536.0402003

光学显微镜自动聚焦取窗方法研究

基金项目: 

广西自然科学基金项目(2013GXNSFAA019323);广西工业创新发展项目(桂工信投资[2012]714号)

详细信息
    通讯作者:

    彭国晋(1988-),男,广西钦州人,硕士,主要从事视频图像处理。Email:2560698279@qq.com

  • 中图分类号: TN911.73;TP391

Auto-focus windows selection algorithm for optical microscope

  • 摘要: 针对全自动光学显微镜系统中,传统聚焦窗口选择方法易受图像内容分布、杂质、噪声等因素干扰的问题,提出一种根据内容像素变化量选择聚焦窗口的方法。该方法将灰度差像素数量与边缘像素数量加权作为内容像素数量,据此衡量失焦模糊状态下子块内容含量并划分聚焦窗口,减少杂质与噪声对取窗过程的影响;用降采样后图像各子块内容含量估计原图像内容分布信息,降低图像滤波、梯度计算过程的计算量;使用局部标准差与锐利边缘像素数量联合检测焦平面图像的失焦模糊区域,有效排除玻片杂质造成的焦平面误判。与传统的显微镜自动聚焦取窗方法相比,对内容丰富程度和分布状况不同的显微图像序列,该方法均能获取有效的聚焦窗口,像素梯度均值更高,所得的评价曲线局部极值极少,尖锐性好,因此该方法的成功率高,鲁棒性更强。
    Abstract: Aiming at the problem that traditional auto-focus windows selection algorithms are susceptible to content distribution, impurities and noise, an auto-focus windows selection method depending on variation of content pixels is proposed. The method takes a weighted average of the amount of gray-leveldifference pixels and the amount of edge pixels as the number of content pixels, then measures image content of sub-block in blurred state and divides focusing windows by the variation of content pixels. In the meantime, the proposed method estimates content distribution information of original image using image content of each sub-block in downsampling image. Besides, the proposed method detects out-of-blurred areas using combined detection of local standard deviation and sharp edge pixels, and it effectively excludes the misjudgments of focal plane caused by the impurities on coverslips. Compared with the traditional auto-focus windows selection algorithms, the proposed method could obtain effective focusing windows for each microscopic sequence varying in richness and distribution of the image content, the corresponding mean gradient of pixels is higher, and the acquired focus measure curve has fewer local extreme values and sharp performance, therefore, the proposed method has more advantages in success ratio and robustness.
  • [1]Zhang Yatao, Ji Shupeng,Wang Qiangfeng. Definition evaluation algorithm based on regional contrast[J]. Journal of Applied Optics, 2012,33(2):293-299.
    张亚涛,吉书鹏,王强锋,等. 基于区域对比度的图像清晰度评价算法[J].应用光学, 2012, 33(2): 293-299.

    [2]You Yuhu,Liu Tong,Liu Jiawen.Survey of the auto-focus method based on image processing[J]. Laser & Infrared, 2013,42(2):132-136.
    尤玉虎,刘通,刘佳文.基于图像处理的自动对焦技术综述[J].激光与红外, 2013, 42(2): 132-136.
     
    [3]Zheng Yuanyuan. Studies on auto-focus system[D] Jinan: Shandong University,2012.
    郑媛媛.自动聚焦算法研究[D].济南:山东大学,2012.
    [4]Chen Guojin. Study on the auto-focusing technology of digital image and realization for an auto-focusing system[D].Xi’an: Xidian University,2007.
    陈国金.数字图像自动聚焦技术研究及系统实现[D].西安:西安电子科技大学,2007.
     [5]He Jie, Zhou Rongzhen, Hong Zhiliang. Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera[J].IEEE Transactions on Consumer Electronics, 2003, 49(2):257-262.
    [6]Li Qi, Feng Huajun, Xu Zhihai. Autofocus system experiment study using variational image-sampling[J] Acta Photonica Sinica,2003,32(12): 1499-1501.
    李奇,冯华君,徐之海.自动对焦系统中图像非均匀采样的实验研究[J].光子学报, 2003, 32(12): 1499-1501.
    [7]Zhu Kongfeng,Jiang Wei,Gao Zan. Focusing windows choice and parameters determination in automatic focusing system[J]. Acta Optica Sinica, 2006,26(6):777-778.
    朱孔凤,姜威,高赞,等.自动聚焦系统中聚焦窗口的选择及参量的确定[J]. 光学学报, 2006, 26(6): 777-780.
    [8]Zhang Le,Jiang Wei,Gao Zan. Automatic focusing region selection algorithm based on first order of digital image[J]. Optical Technique,2008,34(2):163-169.
    张乐,姜威,高赞,等.数字图像一阶矩的自动聚焦区域选择算法[J]. 光学技术, 2008, 34(2):163-169.
     
    [9]Wang Yanfang,Jiang wei. Application of artificial fish swarm algorithm on adaptive auto-focusing window selection[J]. Computer Engineering and Applications,2011,47(14):180-229.
    王彦芳,姜威.应用于聚焦窗口自适应选择的人工鱼群算法改进[J].计算机工程与应用, 2011, 47(14):180-229.
    [10]Zhai Yongping,Liu Yunhui. Auto focusing method for microscope with low image content density[J]. Journal of Software,2012,23(5):1281-1294.
    翟永平,刘云辉.稀疏图像内容情况下显微镜自动聚焦算法[J].软件学报, 2012, 23(5):1281-1294.
    [11]Li Huiguang,WANG Shuai. Study of auto focusing technique of micro-vision system[J].Opto-Electronic Engineering, 2014, 41(8): 1-9. (in Chinese).
    李惠光,王帅.显微视觉系统中自动聚焦技术的研究[J].光电工程,2014, 41(8):1-9.

    [12]Xian Zhaoyong. Research on image blur detection and blurred region segmentation[D].Nanning:Guangxi University,2013.
    咸兆勇.图像模糊检测与模糊区域分割研究[D].南宁:广西大学, 2013.
     
  • 期刊类型引用(7)

    1. 乔贵方,杜宝安,张颖,田荣佳,刘娣,刘汉忠. 基于POE模型的工业机器人运动学参数二次辨识方法研究. 农业机械学报. 2024(01): 419-425 . 百度学术
    2. 陈建云,张奇,姬煜琦,王子,李佳林,李汝鹏,李鹏程,田威. 基于双目视觉的6D位姿测量误差补偿方法. 测试技术学报. 2024(06): 601-609+626 . 百度学术
    3. 田常青. LED式三维表面测量传感器在汽车底盘几何参数测量中的应用研究. 汽车工程师. 2024(12): 21-27 . 百度学术
    4. 康轶譞,刘宇,王亚伟,周立君,郭城,王怡恬. 基于DETR的道路环境下双目测量系统. 应用光学. 2023(04): 786-791 . 本站查看
    5. 王震,许恒硕,廉哲. 映射关系约束下双目视觉测量误差调整仿真. 计算机仿真. 2022(04): 189-192+289 . 百度学术
    6. 吕天宇,邹英永. 基于视触融合的正畸弓丝弯制. 新型工业化. 2022(05): 219-222 . 百度学术
    7. 江滔,马泳,黄珺,王贺松,樊凡. 基于赋权连接图的增量式运动恢复结构算法. 应用光学. 2022(05): 921-928+1014 . 本站查看

    其他类型引用(10)

计量
  • 文章访问数:  1950
  • HTML全文浏览量:  137
  • PDF下载量:  149
  • 被引次数: 17
出版历程

目录

    /

    返回文章
    返回