Illuminating source design of online visual inspection system for glass defects
-
摘要: 为了实现生产线上玻璃质量的自动检测,采用机器视觉的方法对生产线上的玻璃进行缺陷检测。采集图像过程中光照方式对图像质量影响很大,为了避免由光照效果不佳对玻璃质量判断造成的干扰,保证视觉检测系统可识别不同种类的裂痕,研究了机器视觉系统中光源系统相对于生产线上玻璃的位置和光强度,解决上述问题造成的影响。分析光源系统对拍摄玻璃图像中缺陷部分和质量合格部分的相关影响,提出了一种可以检测出不同种类裂痕的光源照射方式,使其能够拍摄满足条件的高质量玻璃图像。通过样本批量测试实验证明:该光源照射方式对玻璃质量在线检测的识别准确率均为90%以上,所采集图像质量满足要求,能够准确检测出不合格产品的缺陷位置、面积大小及缺陷深度。Abstract: A method for automatic glass inspection on the production chain based on visual system was adopted. The method of illuminating is crucial to image in acquisition process,in order to avoid the illuminating jamming for judgment to guarantee the accurate identification result of different cracks by machine visual system, we carried out the research on the illuminating source system,including the luminous intensity,the wavelength and the position relative to line scan camera and glass which is on the production chain. We proposed a novel method of illuminating to achieve high quality image to solve problems caused by the influence of illuminating,with the analysis of influence between the defective part and the normal part when illuminating source system operates. It is proved that the method can realize realtime detecting to achieve accurate and reliable results,through a batch of glass samples tests. From the detection of glass image scanned under the condition provided by illuminating source system,the visual system can compute the defect and present the position size and depth,if the glass is not the acceptable product.
-
-
[1]Jin Jianguang,Wei Ping.An algorithm of glass defection on-line detection system[J].Optical Technique,2006,32(S1):23-25.
金剑光,魏平.一种适用于玻璃生产线的瑕疵检测算法[J]. 光学技术,2006,32(S1):23-25.
[2]Peng Xiangqian,Chen Youping,Xie Jingming,et al. Research on online defect inspection and recognition for float glass fabrication[J].Glass&Enamel,2010(1):1-6.
彭向前,陈幼平,谢经明,等.浮法玻璃缺陷在线检测识别方法研究[J]. 玻璃与搪瓷,2010(1):1-6.
[3]Bao Yiwang,Zhou Huabin,Qiu Yan,et al.Experimental research on glass defect inspection technology based on photoelasticity[J].Glass and Door Window Curtain,2010(S2):147-150.
包亦望,周华斌,邱岩,等. 基于光弹法的玻璃缺陷检测技术的实验研究[J]. 中国建材科技,2010(S2):147-150.
[4]Wang Fei.Study on the quality of glass on-line detection system based on machine vision[D].Zhengzhou:Henan University of Science&Technology,2010.
王飞. 基于机器视觉的玻璃质量在线检测系统研究[D].郑州:河南科技大学,2010.
[5]Zhou Xin,Deng Wenyi,Liu Lishuang.Research on fast detection and classification of glass defect[J]. Micro Computer Information,2008,27:304-305.
周欣,邓文怡,刘力双. 玻璃缺陷快速检测分类研究[J]. 微计算机信息,2008,27:304-305.
[6]Adamo F,Attivissimo F,Nisio A D,et al. A low-cost inspection system for online defects assessment in satin glass[J]. Measurement, 2009,42(9):1304-1311.
[7]Yu Fashan,Tian Xifang,Han Chaochao,et al. Research on on-line defect detection technology for glass production[J]. Journal of Henan Polytechnic University:Natural Science,2013(4):476-480.
余发山,田西方,韩超超,等. 玻璃生产缺陷在线检测技术研究[J]. 河南理工大学学报:自然科学版,2013(4):476-480.
[8]Wei Tao,Wang Zhaoba,Jin Yong,et al. Study on glass defect inspection technology based on image reconstruction[J]. Control and Instrument in Chemical Industry,2010(6):58-61.
魏涛,王召巴,金永,等. 基于图像重构的玻璃缺陷检测技术研究[J]. 化工自动化及仪表,2010(6):58-61.
[9]Yi Qiaomu,Cheng Jinshu,Zhou Yang,et al. Machine-vision based online quality detection system for glass production[J]. Journal of Wuhan University of Technology,2007(5):23-26.
易乔木,程金树,周洋,等. 一种基于机器视觉的玻璃质量在线检测系统[J]. 武汉理工大学学报,2007(5):23-26.
[10]Xiong Guangjie,Ma Shuyuan,Nie Xueyuan,et al. Defects inspection system of HID PCB based on machine vision[J].Computer Measurement&Control,2011(8):1824-1826.
熊光洁,马树元,聂学俊,等. 基于机器视觉的高密度电路板缺陷检测系统[J]. 计算机测量与控制,2011(8):1824-1826.
[11]Liu Huaiguang,Chen Youping,Xie Jingming,et al.Research on line recognition technology for float glass defects[J].Journal of Chinese Computer Systems,2011(4):738-742.
刘怀广,陈幼平,谢经明,等. 浮法玻璃缺陷在线识别技术的研究[J]. 小型微型计算机系统,2011(4):738-742.
-
期刊类型引用(5)
1. 方俊文,司娟宁,王昊伟. 基于张正友标定法的系统姿态调节方法. 传感器世界. 2024(11): 15-19 . 百度学术
2. 卢荣胜,吴昂,张腾达,王永红. 自动光学(视觉)检测技术及其在缺陷检测中的应用综述. 光学学报. 2018(08): 23-58 . 百度学术
3. 南瑞亭,陈冬雪. 轮胎剪切散斑干涉包裹相位图缺陷识别方法. 中国测试. 2017(04): 114-117 . 百度学术
4. 郭媛,刘丹丹,毛琦. 基于剪切散斑干涉技术的物体变形动态检测. 应用光学. 2017(05): 777-783 . 本站查看
5. 王永红,吕有斌,高新亚,但西佐,杨连祥. 剪切散斑干涉技术及应用研究进展. 中国光学. 2017(03): 300-309 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 2006
- HTML全文浏览量: 146
- PDF下载量: 146
- 被引次数: 19